Driver Sleepiness Detection Algorithm Based on Relevance Vector Machine

Author:

Wei Lingxiang1ORCID,Feng Tianliu1ORCID,Zhao Pengfei2ORCID,Liao Mingjun3ORCID

Affiliation:

1. Yancheng Institute of Technology

2. Beijing University of Civil Engineering and Architecture

3. Yancheng Institute of Technology; Beijing Jiaotong University

Abstract

Driver sleepiness is one of the most important causes of traffic accidents. Efficient and stable algorithms are crucial for distinguishing nonfatigue from fatigue state. Relevance vector machine (RVM) as a leading-edge detection approach allows meeting this requirement and represents a potential solution for fatigue state detection. To accurately and effectively identify the driver’s fatigue state and reduce the number of traffic accidents caused by driver sleepiness, this paper considers the degree of driver’s mouth opening and eye state as multi-source related variables and establishes classification of fatigue and non-fatigue states based on the related literature and investigation. On this basis, an RVM model for automatic detection of the fatigue state is proposed. Twenty male respondents participated in the data collection process and a total of 1000 datasets of driving status (half of non-fatigue and half of fatigue) were obtained. The results of fatigue state recognition were analysed by different RVM classifiers. The results show that the recognition accuracy of the RVM-driven state classifiers with different kernel functions was higher than 90%, which indicated that the mouth-opening degree and the eye state index used in this work were closely related to the fatigue state. Based on the obtained results, the proposed fatigue state identification method has the potential to improve the fatigue state detection accuracy. More importantly, it provides a scientific theoretical basis for the development of fatigue state warning methods.

Publisher

Riga Technical University

Subject

Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3