Influence of Production Temperature and Aggregate Moisture Content on the Initial Performance of Warm-Mix Asphalt

Author:

Bennert Thomas1,Maher Ali1,Sauber Robert2

Affiliation:

1. Center for Advanced Infrastructure and Transportation, Rutgers University, 100 Brett Road, Piscataway, NJ 08854.

2. Bureau of Materials, New Jersey Department of Transportation, 930 Lower Ferry Road, Building 2, Trenton, NJ 08625.

Abstract

The concept and use of warm-mix asphalt (WMA) is becoming more popular in the asphalt industry. The promise of reduced energy consumption, reduced emissions, and a more workable product is appealing to an industry pressured by environmentalists with sustainability agendas and state agencies that apply pay adjustments on the bases of ride quality and pavement density. The use of WMA may come with some potential issues, however. Lower production temperatures may result in softer asphalt because of reduced oxidative aging, while poorly dried aggregates may create a problem from moisture damage. To evaluate these issues, a research project was undertaken to quantify the influence of mixing (production) temperature on the rutting and fatigue cracking performance of WMA mixtures. Stripping potential was also evaluated by using prewetted aggregate blends and by modifying the mixing procedure in the laboratory to more appropriately simulate a drum plant production of WMA. The laboratory procedure clearly indicated a decrease in rutting resistance and stiffness when evaluated in an asphalt mixture performance tester and dry Hamburg wheel tracking (HWT) tests once mixing temperatures decreased. Fatigue cracking resistance meanwhile increased in an overlay tester. Tensile strength ratio (TSR) and wet HWT tests indicated that TSR and Hamburg rutting values were able to obtain only passing results at conventional hot-mix asphalt mixing temperatures and with dry aggregates. The information presented may help state agencies to develop quality control testing plans for future implementation of WMA.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3