Automated Procedure for Generation of Creep Compliance Master Curve for Asphalt Mixtures

Author:

Buttlar William G.1,Roque Reynaldo2,Reid Brian2

Affiliation:

1. Department of Civil Engineering, University of Illinois at Urbana-Champaign, 1212 Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801

2. Department of Civil Engineering, University of Florida, 345 Weil Hall, Gainesville, FL 32611

Abstract

For the design of asphaltic paving mixtures under heavy traffic loading, the Superpave system specifies use of performance-based mixture tests and prediction models to supplement volumetric mix design procedures. Central to the mechanics-based thermal cracking model used in Superpave is the prediction of thermally induced stresses based on a master curve and shift factor concept. The original version of Superpave had procedures for automated construction of the mixture creep compliance master curve from measured mixture properties. However, recent studies have indicated the need for several new modeling techniques, the development of which has resulted in the need for substantially more sophisticated procedures for automated construction of the master curve. This paper details the development of a computer program called MASTER, which automates master curve construction using built-in logic capabilities designed to handle the wide variety of measured responses encountered in practice. MASTER was found to agree closely with manually determined shift factors for 36 field mixtures investigated. The program was also found to be extremely robust, producing rational shift factors even when used to analyze complicated, thermally damaged materials. On the basis of these findings, the procedures developed here are recommended for inclusion in future revisions of the Superpave performance modeling software.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference8 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3