Performance Measures to Characterize Corridor Travel Time Delay Based on Probe Vehicle Data

Author:

Brennan Thomas M.1,Remias Stephen M.2,Manili Lucas1

Affiliation:

1. College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628.

2. Joint Transportation Research Program, Purdue University, Hampton Hall of Engineering, 550 Stadium Mall Drive, West Lafayette, IN 47905.

Abstract

Anonymous probe vehicle data are being collected on roadways throughout the United States. These data are incorporated into local and statewide mobility reports to measure the performance of highways and arterial systems. Predefined spatially located segments, known as traffic message channels (TMCs), are spatially and temporally joined with probe vehicle speed data. Through the analysis of these data, transportation agencies have been developing agencywide travel time performance measures. One widely accepted performance measure is travel time reliability, which is calculated along a series of TMCs. When reliable travel times are not achieved because of incidents and recurring congestion, it is desirable to understand the time and the location of these occurrences so that the corridor can be proactively managed. This research emphasizes a visually intuitive methodology that aggregates a series of TMC segments based on a cursory review of congestion hotspots within a corridor. Instead of a fixed congestion speed threshold, each TMC is assigned a congestion threshold based on the 70th percentile of the 15-min average speeds between 02:00 and 06:00. An analysis of approximately 90 million speed records collected in 2013 along I-80 in northern New Jersey was performed for this project. Travel time inflation, the time exceeding the expected travel time at 70% of measured free-flow speed, was used to evaluate each of the 166 directional TMC segments along 70 mi of I-80. This performance measure accounts for speed variability caused by roadway geometry and other Highway Capacity Manual speed-reducing friction factors associated with each TMC.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3