Improving Transit Service Quality and Headway Regularity with Real-Time Control

Author:

Ding Yuqing1,Chien Steven I.2

Affiliation:

1. Parsons Transportation Group, Inc., 110 William Street, 13th Floor, New York, NY 10038

2. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982

Abstract

Disrupted transit operations are often caused by stochastic variations of passenger demand at stations and traffic conditions on service routes, which increase passenger wait times and thus discourage passengers from using the transit system. Efficient, real-time operational control is desirable to maintain headway regularity and reduce the negative effects of service disturbance. A real-time headway control model is proposed to maintain desired headways for pairs of successive vehicles by minimizing total headway variance for all stations in an advanced public transportation system environment, such as an automatic train control system and an automatic vehicle location system. A vehicle’s departure time can be adjusted on the basis of its optimal arrival time at the next station, while considering the maximum attainable operating speeds and the headways to its leading and following vehicles. The proposed real-time control model is tested by simulating a high-frequency light rail transit route in Newark, New Jersey. The simulation results demonstrate that the average passenger wait time is significantly reduced after applying the control model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An In-Depth Investigation of Innovative Electric Traction Power Supply Systems for Mass Rapid Transit;Engineering, Technology & Applied Science Research;2023-12-05

2. Data-Driven Real-Time Denied Boarding Prediction in Urban Railway Systems;Transportation Research Record: Journal of the Transportation Research Board;2023-07-11

3. Bus Headways Analysis for Anomaly Detection;IEEE Transactions on Intelligent Transportation Systems;2022-10

4. Cooperative robust adaptive control of multiple trains based on RBFNN position output constraints;Expert Systems;2022-06-12

5. Optimal Approach to Improving the Utilization of Regenerative Energy Considering Power Profile;Transportation Research Record: Journal of the Transportation Research Board;2021-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3