Evaluation of the Zone of Influence and Stiffness Improvement from Geogrid Reinforcement in Granular Materials

Author:

Schuettpelz Craig1,Fratta Dante2,Edil Tuncer B.3

Affiliation:

1. Golder Associates Inc., 44 Union Boulevard, Suite 300, Lakewood, CO 80228.

2. Geological Engineering Program, Madison, WI 53706-1691.

3. Department of Civil and Environmental Engineering, University of Wisconsin–Madison, 1415 Engineering Drive, Madison, WI 53706-1691.

Abstract

The longevity of a pavement system is closely related to the amount of deformation of both the asphalt surface and the underlying layers. Placing a geogrid in the granular base decreases the amount of rutting at the surface by providing some strength to the base and increasing stiffness and thus limiting elastic deformations and loads transmitted to the sub-grade. However, the zone of influence of the geogrid layer on surrounding soil particles and the increase in modulus in this zone are not well known. A testing scheme aimed at quantifying both the zone of influence and the increase in the modulus caused by the presence of a geogrid in granular materials was developed. Both P-wave velocity and the shear strain induced by loading a 150-mm diameter plate were examined. P-wave velocity results indicated a change in modulus across the geogrid from a minimum of 1.35 (at 75-mm geogrid depth) to a maximum of 2.66 (at 100-mm geogrid depth) over modulus expected in unreinforced soils. Expected internal soil rotations were modeled with PLAXIS and compared with laboratory tests. These analyses showed that the shearing of soil was confined to a zone above the geogrid. Rotation tests showed a zone of influence of 30 to 40 mm on both sides of the geogrid reinforcement; however, the zone of influence depends on the position of the geogrid, with a geogrid 100 mm in depth seeming most able to constrain subsurface soils and distribute the shear stresses caused by the 150-mm-diameter loading plate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3