Influence of Reclaimed Asphalt Pavement on Performance-Related Properties of Gap-Graded Rubberized Hot-Mix Asphalt

Author:

Hung Shawn S.1,Alavi Mohammad Zia1,Jones David1,Harvey John T.1

Affiliation:

1. University of California Pavement Research Center, Department of Civil and Environmental Engineering, College of Engineering, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616

Abstract

Rubberized hot-mix asphalt (RHMA) has been widely used in construction projects by the California Department of Transportation (Caltrans) for the environmental benefits of its recycled waste tires and for its improved fatigue and reflective cracking resistance. Currently, Caltrans does not permit the use of reclaimed asphalt pavement (RAP) in any gap- or open-graded rubberized asphalt mixes. However, given the cost and environmental benefits of RAP to replace portions of required virgin binder and aggregates in conventional mixes, interest is growing in the addition of some RAP to RHMA mixes as well. This study investigated concerns about this proposed practice. Three phases of laboratory testing (i.e., asphalt binder testing, fine aggregate matrix mix testing, and full-graded mix testing) were conducted to evaluate the effects of the addition of RAP into new RHMA mixes. The results indicated that the gap-graded aggregate structure of RHMA might limit the amount of RAP that could be used in the mix. Only 10% RAP by binder replacement could be achieved for the mix tested in this study, but the other specified volumetric requirements were still met. Replacement of a portion of asphalt rubber binder with age-hardened RAP binder increased the binder stiffness at low and high temperatures, which indicated enhanced rutting performance but diminished low-temperature cracking performance. Test results from full-graded mixes indicated similar trends, with improved rutting performance with the addition of RAP but also with significantly poorer fatigue and reflective cracking resistance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference11 articles.

1. XiaoF. Development of Fatigue Predictive Models of Rubberized Asphalt Concrete (RAC) Containing Reclaimed Asphalt Pavement (RAP) Mixtures. PhD dissertation. Clemson University, Clemson, S.C., 2006.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3