Accident Prediction Models for Bus Rapid Transit Systems

Author:

Gómez Fidel1,Bocarejo Juan Pablo2

Affiliation:

1. Oficina ML126, Department of Civil and Environmental Engineering, Universidad de los Andes, 19A40 Carrera 1 Este, Bogotá, Colombia

2. Oficina ML634, Department of Civil and Environmental Engineering, Universidad de los Andes, 19A40 Carrera 1 Este, Bogotá, Colombia

Abstract

This research sought to model traffic accidents in the bus rapid transit (BRT) system in Bogotá, Colombia. For each BRT station, 35 variables related to system flows, infrastructure, service, surroundings, and socio-economic context were tested. After a selection process, a set of 11 explanatory variables was obtained and used in the development of generalized linear models (Poisson and negative binomial models) and a neural network model. The results showed that the neural network model had better predictability indicators than did those obtained by the Poisson and negative binomial models. Additionally, the negative binomial regression model did not produce better predictions than did the Poisson regression model. Finally, a scenario analysis was developed from the most relevant variables: bus flow, number of accesses, and proximity to at-grade vehicular intersections.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3