Affiliation:
1. Department of Civil and Environmental Engineering and Department of Mechanical and Aerospace Engineering, West Virginia University, 517 Engineering Sciences Building, Morgantown, WV 26506
Abstract
Nonlinear explicit three-dimensional finite element (3-D FE) modeling is used to investigate the performance of the falling weight deflectometer (FWD) test in the evaluation of layer moduli of jointed plain concrete pavements (JPCP) subjected to nonlinear thermal gradient through the slab thickness. Concrete slab separation from the base, in-plane friction at the concrete-base interface, the gravitational forces, and the interface characteristics between dowel bars and surrounding concrete are all represented in the 3-D FE model. Experimental verification of the model is obtained through comparison of the 3-D FE generated response to ( a) the FWD measured deflection basin and ( b) the measured response of an instrumented rigid pavement section located in Ohio to a loaded truck moving at 21.8 m/s (48 mph). Several cases of linear and nonlinear thermal gradients are applied to the model, and deflection basins are obtained. Two backcalculation programs, MODULUS 5.0 and EVERCALC 4.0, are used for prediction of the layer moduli in each case, and the values are compared. The results indicate that thermal curling of the slab due to negative thermal gradient has little effect on the accuracy of backcalculated moduli. Warping of the slab due to positive thermal gradient greatly influences the measured FWD deflection basin and leads to significant errors in the backcalculated moduli. These errors may be minimized if the time an FWD test is conducted falls between the late afternoon and midmorning (from 5:30 p.m. to 9:30 a.m. during summer in West Virginia).
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献