Feature Selection for Intrusion Detection with Neural Networks and Support Vector Machines

Author:

Mukkamala Srinivas1,Sung Andrew H.2

Affiliation:

1. Department of Computer Science, Institute for Complex Additive Systems Analysis, New Mexico Institute of Mining and Technology

2. Institute for Complex Additive Systems Analysis, New Mexico Institute of Mining and Technology

Abstract

Computational intelligence (CI) methods are increasingly being used for problem solving, and CI-type learning machines are being used for intrusion detection. Intrusion detection is a problem of general interest to transportation infrastructure protection, since one of its necessary tasks is to protect the computers responsible for the infrastructure’s operational control, and an effective intrusion detection system (IDS) is essential for ensuring network security. Two classes of learning machines for IDSs are studied: artificial neural networks (ANNs) and support vector machines (SVMs). SVMs are shown to be superior to ANNs in three critical respects of IDSs: SVMs train and run an order of magnitude faster; they scale much better; and they give higher classification accuracy. A related issue is ranking the importance of input features, which is itself a problem of great interest. Since elimination of the insignificant (or useless) inputs leads to a simplified problem and possibly faster and more accurate detection, feature selection is very important in intrusion detection. Two methods for feature ranking are presented: the first one is independent of the modeling tool, while the second method is specific to SVMs. The two methods were applied to identify the important features in the 1999 Defense Advanced Research Projects Agency intrusion data set. It was shown that the two methods produce results that are largely consistent. Experimental results indicated that SVM-based IDSs with a reduced number of features can deliver enhanced or comparable performance. An SVM-based IDS for class-specific detection is proposed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference18 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3