Effect of Geometric Factors on Lateral Position of Vehicles in Freeway Buffer-Separated Managed Lanes

Author:

Lindheimer Tomás E.1,Fitzpatrick Kay1,Avelar Raul1,Miles Jeffrey D.2

Affiliation:

1. Texas A&M Transportation Institute, 3135 TAMU, College Station, TX 77843-3135

2. Texas Department of Transportation, 2591 North Earl Rudder Freeway, Bryan, TX 77803

Abstract

Chapter 3 in the 2004 AASHTO high-occupancy-vehicle guidelines includes a prioritized trade-off table of various design options for high-occupancy-vehicle lanes (now known as managed lanes). The design trade-offs include the reduction of lane, shoulder, or buffer width. The key measure thought to be affected by lane, shoulder, and buffer width is lateral position. The presented study identified the relationship between operations and cross-section width, including the type of buffer design separating the managed lanes from the general-purpose lanes. This research study collected lateral position data on existing managed lane facilities with a range of geometric elements within both tangent and horizontal curves and identified potential relationships between the geometric design element values and the measure of effectiveness. The field studies included data collected at 28 sites with fixed video cameras and along 161 centerline miles with an instrumented vehicle that recorded data for the vehicle immediately in front of the instrumented vehicle. The study found that managed-lane drivers shifted away from the pylons placed in the buffer. Horizontal alignment (tangent or curve) and the direction of the horizontal curve (left or right) influenced lateral position. Left shoulder, lane, and buffer width affected lateral position. Modifying a 6.5-ft shoulder to a minimum shoulder (i.e., 1.5 ft) will result in drivers moving to the right about 0.5 ft; however, if an 18.5-ft shoulder is reduced by 5 ft, the impact in operations is negligible (drivers would shift only about 0.11 ft toward the right).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference6 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3