Synthesis, Characterization, and Mechanical Properties of Red Mud–Based Geopolymers

Author:

Zhang Guoping1,He Jian2,Gambrell Robert P.3

Affiliation:

1. 3504 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803.

2. 210 Old Coastal Studies Building, Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803.

3. Gambrell, 3253 Energy, Coast, and Environment Building, Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803.

Abstract

A pilot study investigates the potential of reusing red mud, an abundant industrial waste produced from alumina refining by the Bayer process, by geopolymerization reactions with another solid waste, fly ash, and sodium silicate. Parameters involved in the synthesis, including red mud to fly ash ratio (values of 80/20, 50/50, and 20/80), presence of sand filler, curing duration (up to 28 days), and sodium silicate solution to solid mixture (consisting of red mud and fly ash) ratio, were examined to understand the extent and degree of geopolymerization. Unconfined compression testing was employed to assess the influence of these synthesis parameters on the mechanical properties of the end products, red mud–based geopolymers. The composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy, respectively, which confirm the geopolymerization reactions. The mechanical properties, including strength, stiffness, and failure strain, were analyzed against the chemical compositions of the red mud geopolymers, such as Si/Al and Na/Si molar ratios. For the studied geopolymers, the unconfined compressive strength, ranging from 7 to 13 MPa, increases with the Si/Al ratio as in some types of portland cement. A higher Na/Si ratio appears to reduce the strength and stiffness but enhance the ductility. The results indicate that red mud geopolymers are a viable cementitious material that can be used in roadway construction. The engineering implications are discussed in terms of waste recycling, environmental benefits, and energy consumption.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3