Characteristics of Urban Arterial Crashes Relative to Proximity to Intersections and Injury Severity

Author:

Das Abhishek1,Pande Anurag1,Abdel-Aty Mohamed1,Santos Joseph B.2

Affiliation:

1. Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450.

2. Florida Department of Transportation, State Safety Office, MS #53, 605 Suwannee Street, Tallahassee, FL 32399-0450.

Abstract

Intersections of an urban arterial corridor may influence crashes that occur even beyond their physical area. This study examines the effect of the gradual change in the distance of intersection influence on crash characteristics that explain injury severity outcomes of arterial crashes. The approach adopted involves simultaneous estimation of two variables: an ordinal variable representing crash-injury severity and a binary variable representing crash location (intersection versus segment crashes). The dichotomy in crash location is based on the threshold distance of intersection influence. Five sets of bivariate simultaneous models were estimated by using five threshold distances of influence varying from 0 to 200 ft at 50-ft increments. A threshold of 0 ft essentially means that crashes only at the physical area of intersections are treated as intersection crashes. The other four thresholds define crashes 50, 100, 150, and 200 ft from the center of the intersections as intersection crashes. Simultaneous estimation allows accounting for common factors that affect both crash location and injury severity, but are explicitly included in neither model. Effects of these common unknown factors are reflected in the estimated correlation coefficient between the error terms for the two models. The correlation coefficients were found to be significant for influence distances of 150 and 200 ft and insignificant for influence distances 0 through 100 ft. The implications of these results are discussed. Results of the simultaneous estimation also reveal that crashes on the corridor are less severe during afternoon peak traffic conditions and on blacktop surfaces, while segments with a higher speed limit, a wider pavement surface, and a lower-than-median annual average daily traffic are likely to experience more severe crashes. At low-influence distance thresholds (≤50 ft), pavement surface condition (dry pavement) is significant in discriminating intersection crashes from segment crashes, while pavement surface type (blacktop surface) is significant at higher (≥150-ft) thresholds.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

1. Traffic Safety Facts 2005: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimate System. NHTSA, U.S. Department of Transportation, 2006.

2. Analysis of driver injury severity levels at multiple locations using ordered probit models

3. Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3