Engineering Properties of Loess-Fly Ash Mixtures for Roadbase Construction

Author:

Zia Nayyar1,Fox Patrick J.2

Affiliation:

1. Materials and Tests Division, Indiana Department of Transportation, 120 South Shortridge Road, Indianapolis, IN 46219

2. Civil and Environmental Engineering Department, University of California, Los Angeles, CA 90095

Abstract

Southwest Indiana has large deposits of wind-blown loess. Similar deposits are found in other states, including Illinois, Kentucky, Iowa, Minnesota, Missouri, and Nebraska. These soils consist of uniform silt with a plasticity index ranging from 0 to 10. This material is suitable for road construction if it is compacted dry of optimum. However, the material is difficult to work after it becomes wet, which commonly results in construction delays. Indiana also has large stockpiles of Class C fly ash from coal-burning power plants. The ash has cementitious properties after hydration (because of the high calcium content) and can be mixed with native soil to produce a weakly cemented soil. Significant interest exists at the Indiana Department of Transportation about the possibility of using Class C fly ash to improve the engineering properties of Indiana loess soils. The results of a laboratory testing program on the properties of loess–fly ash mixtures are presented. Various percentages of fly ash were mixed with loess soil and specimens were permitted to cure for 3 h to 28 days. Pure loess also was tested for comparison. Changes in Atterberg limits, moisture-density relationships, swell potential, and unconfined compression strength are presented. Based on this testing program, a simple method was developed to determine the optimum fly ash content for construction of a workable loess roadbed to avoid delays in construction due to wet conditions. The data presented will be useful for evaluating the stabilization of loess soils with Class C fly ash in Indiana and other states with significant loess soil deposits.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

1. Engineering Soils Map for Knox County, Indiana : Final Report

2. BrunsonK. L. Clay Mineralogy of Some Loess–Derived Soils and Sangamon Paleosols in South Western Indiana. M.S. thesis. Indiana University, Bloomington, 1976.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3