Study of Cross-Correlations in Traffic Networks with Applications to Perimeter Control

Author:

Zhang Lele1,Stuart Callum2,Rajapaksha Samithree3,White Gentry4,Garoni Timothy3

Affiliation:

1. Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

2. Bureau of Meteorology, 700 Collins Street, Docklands, Victoria 3208, Australia

3. ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Monash University, Victoria 3800, Australia

4. Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia

Abstract

A cross-correlation is proposed between network-aggregated density and flow as a natural indicator of traffic phases for two-dimensional road networks. An online estimator of the cross-correlation was studied with the use of empirical data. The result suggests that the measure can be used to identify traffic phases. To understand better the behavior of the true statistical cross-correlation, generic networks were simulated. With homogeneously distributed densities, the simulations suggested that the cross-correlation monotonically decreases with the growth of the mean density and vanishes when the network is at capacity. As a consequence, for such networks, the phase can be identified from a single point on the curve of the cross-correlation versus mean density. A case study of cross-correlation–based perimeter-control strategies was performed, with gate traffic flowing into the network when the cross-correlation was below a (negative) threshold to improve network flows. The simulation results suggest that even with anisotropic traffic demand, the cross-correlation–based control strategy can improve network performance, specifically traffic flow and density heterogeneity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference2 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A deep learning-based framework for road traffic prediction;The Journal of Supercomputing;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3