Network-Level Pavement Roughness Prediction Model for Rehabilitation Recommendations

Author:

Kargah-Ostadi Nima1,Stoffels Shelley M.1,Tabatabaee Nader2

Affiliation:

1. Department of Civil and Environmental Engineering, Pennsylvania State University, 3127 Research Drive, State College, PA 16801.

2. Department of Civil Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9313, Tehran, Iran.

Abstract

Pavement performance models are key components of any pavement management system (PMS). These models are used in a network-level PMS to predict future performance of a pavement section and identify the maintenance and rehabilitation needs. They are also used to estimate the network conditions after the application of various maintenance and rehabilitation alternatives and to determine the relative cost effectiveness of each maintenance and rehabilitation alternative. Change in pavement surface roughness over time is one of the most important performance indicators in this regard. A model for changes in the international roughness index (IRI) over time was developed through artificial neural networks (ANNs) pattern recognition, using information from the Specific Pavement Study (SPS)-5 asphalt concrete rehabilitation experiment extracted from FHWA's Long-Term Pavement Performance database. This model can be used to predict and compare pavement roughness variation trends after various rehabilitation alternatives. An example illustrates the implementation of the roughness model along with life-cycle cost analysis in making future pavement rehabilitation recommendations. Model testing results indicate prediction of IRI with minimal errors, and predicted future roughness trends match perfectly with the past performance. These findings indicate that the ANN model performs successfully in predicting IRI trends following each kind of treatment in the SPS-5 experiment. The ANN model was developed for the SPS-5 flexible pavement rehabilitation sections in a wet–freeze climate and may be applied for similar conditions. The example also shows that the detailed model development and implementation framework provided in this study can assist in network-level PMS decision making.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference29 articles.

1. Guide for Design of Pavement Structures. AASHTO, Washington, D.C., 1993.

2. Pavement Management for Airports, Roads, and Parking Lots

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3