Prediction of Fatigue Failure at Asphalt Concrete Layer Interface from Monotonic Testing

Author:

Tozzo Cristina1,D'Andrea Antonio1,Al-Qadi Imad L.2

Affiliation:

1. Dipartimento di Ingegneria Civile Edile e Ambientale, Sapienza University of Rome, Via Eudossiana 18, Rome 001854, Italy.

2. Illinois Center for Transportation, Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, MC250, Urbana, IL 61801.

Abstract

This study investigated the characterization of interface shear behavior in asphalt concrete through the estimation of the stress ratio (SR). This parameter, originally identified as the ratio between predicted interface stress from a finite element model (FEM) and interface shear strength at the corresponding normal stress, was assumed to be dynamic. As part of the experimental plan, monotonic tests on double-layered asphalt specimens were performed. Dynamic evaluations of the number of repetitions to failure under several stress conditions, equal to or higher than stresses computed from an FEM of the pavement structure, were also performed. The failure curves of the two testing modalities show similar patterns on the Mohr plane. The Hoek–Brown shear strength failure criterion and the three-dimensional surface that best fits the dynamic outcomes were considered. In this scenario, the SR referred to the proportion between the applied shear stress conditions in the dynamic modality and the maximum stress from monotonic tests. For the same predicted failure repetitions, SR assumed a constant value. Correlating monotonic and dynamic results could be an important approach both in furthering knowledge of interface shear strength and in predicting information about failure under repetitive loading applications based on simple monotonic tests.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3