Affiliation:
1. Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, United Kingdom.
Abstract
The existing literature on activity-based modeling emphasizes that individuals schedule their activities by keeping the whole-day activity pattern in mind. Several attempts have been made to integrate this with network congestion; however, for explicit explanation of travel behavior of individuals, further improvements are required. The proposed model is a combined model that addresses the scheduling of the home–work tour with time-varied network congestion in a fixed-point problem framework. Marginal utility profiles that represent individual time-of-day preferences and satiation effect of the activities are incorporated for the measurement of the utility of activity engagement along with the disutility of travel. Consideration of only time-of-day dependent marginal utility profiles of activities in the utility function does not appropriately integrate activities and travel within the tour. The proof is shown analytically and numerically. This finding contradicts earlier research into integration of morning and evening commutes with network congestion. Additionally, the results of two numerical experiments are presented. In the first experiment, an arbitrary dynamic tolling strategy is assumed, and then a detailed analysis is performed to show variation in the balance of trade-offs involved in the process. The second experiment assesses the sensitivity of the combined model through incorporation of different dynamic traffic loading models. Some meaningful observations are drawn from these experiments and are discussed with the identification of avenues for future research.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献