Modeling Bicycle Facility Operation

Author:

Gould Gregory1,Karner Alex1

Affiliation:

1. Department of Civil and Environmental Engineering, University of California, 1 Shields Avenue, Davis, CA 95616.

Abstract

Current concerns surrounding regional air pollution, climate change, rising gasoline prices, and urban congestion could presage a substantial increase in the bicycle mode share. However, state-of-the-art methods for the safe and efficient design of bicycle facilities are based on difficult-to-collect data and potentially dubious assumptions regarding cyclist behavior. Simulation models offer a way forward, but existing bicycling models in the academic literature have not been validated with actual data. These shortcomings are addressed by obtaining real-world bicycle data and implementing a multilane, inhomogeneous cellular automaton simulation model that can reproduce observations. The existing literature is reviewed to inform the data collection and model development. It is found that the model emulates field conditions while possibly underpredicting bike path capacity. Since the simulation model can “observe” individual cyclists, it is ideally suited to determine level of service based on difficult-to-observe cycling events such as passing. Future work on data collection and model development is suggested.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3