Role of Potassium Acetate Deicer in Accelerating Alkali–Silica Reaction in Concrete Pavements

Author:

Balachandran Chandni1,Olek Jan2,Rangaraju P. R.3,Diamond Sidney2

Affiliation:

1. SES Group & Associates LLC, 614 Biddle Street, Chesapeake City, MD 21915.

2. School of Civil Engineering, Purdue University, Room G223, 550 Stadium Mall Drive, West Lafayette, IN 47907.

3. Department of Civil Engineering, Clemson University, 220 Lowry Hall, Clemson, SC 29634-0911.

Abstract

About 15 years after the introduction of alkali–acetate and alkali–formate deicers, premature deterioration was observed on some airfield pavements that had been exposed to the deicers. A characteristic map cracking pattern was observed on pavement surfaces that had experienced repeated applications of these deicers, and the suspected cause of this cracking pattern was accelerated alkali–silica reaction (ASR). Laboratory-based research indicated that alkali–silica reactive aggregates may undergo active deterioration when intimately exposed to such deicers under conditions promoting accelerated reaction. Investigations were conducted on cores collected from an airport whose deicing operations involved repeated applications of potassium acetate deicer. Detailed microscopic investigation indicated that uniform distress existed throughout the depth of the pavement, although in one, the distress resulted from alkali-carbonate reaction rather than from ASR. However, investigations on the depth of penetration of deicer into these pavement cores showed only limited incursion. A companion laboratory study estimated the extent of deicer penetration under different laboratory exposure conditions. Even in a relatively aggressive wetting and drying exposure regime, ingress of the deicer was limited. Thus, it was concluded that although the potassium acetate deicer can induce severe ASR under aggressive laboratory conditions, penetration into field airport pavements may be so limited in some cases that the potassium acetate deicer does not seem to aggravate the ASR distress should one already exist.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3