Impact of Variations in Travel Demand and Network Supply Factors for Evacuation Studies

Author:

Pel Adam J.1,Hoogendoorn Serge P.1,Bliemer Michiel C. J.1

Affiliation:

1. Faculty of Civil Engineering and Geosciences, Department of Transport and Planning, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, Netherlands.

Abstract

Traffic simulation models are frequently used to support decisions when an evacuation is planned. These models typically focus on traffic dynamics and the effect of traffic control measures to locate possible bottlenecks and predict evacuation times. However, a clear view of the crucial factors that determine evacuation time and emergent traffic states is lacking. In this paper, a structured and comprehensive sensitivity analysis identifies and quantifies the impact of variations in travel demand and network supply in the case of evacuation. The sensitivity analysis involves applying the macroscopic evacuation traffic simulation model EVAQ, in which aspects such as trip generation, departure rates, route flow rates, road capacities, and maximum speeds are systematically varied. That is accomplished using a case study that describes evacuation of the Rotterdam, Netherlands, metropolitan area. Departure rates and route flow rates are found to have a substantial nonlinear impact on network conditions and arrival pattern, particularly when the network load is relatively high, whereas trip generation and road capacities have a smaller quasilinear impact. Maximum speeds, independent of the effect on road capacities, have no significant impact on evacuation. The results, discussion, and conclusions presented can be used to identify the most important factors in (a) verifying, calibrating, and validating an evacuation model; (b) designing a network for evacuation studies; and (c) evaluating and testing the robustness of evacuation plans.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and analyzing the traffic flow during evacuation in Hurricane Irma (2017);Transportation Research Part D: Transport and Environment;2022-09

2. RESEARCH TRENDS AND PROSPECTS FOR RECONSTRUCTION PLANNING IN JAPAN;Journal of Architecture and Planning (Transactions of AIJ);2022-09-01

3. A phased vehicles evacuation planning method for disasters with time-dependent traffic demand;2022 29th International Conference on Geoinformatics;2022-08-15

4. Modeling of Collective Evacuation Behavior with Conformity Bias and Passivity-based Nudging Design;Transactions of the Society of Instrument and Control Engineers;2022

5. Modeling transit-assisted hurricane evacuation through socio-spatial networks;International Journal of Geographical Information Science;2020-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3