Spatial Correlation in Multilevel Crash Frequency Models

Author:

Aguero-Valverde Jonathan1,Jovanis Paul P.2

Affiliation:

1. Programa de Investigación en Desarrollo Urbano Sostenible, Universidad de Costa Rica, Barrio Los Profesores, Calle B, No 11, Mercedes, San Pedro, San José, 11503 Costa Rica.

2. Department of Civil and Environmental Engineering and Pennsylvania Transportation Institute, Pennsylvania State University, 212 Sackett Building, University Park, PA 16802-1408.

Abstract

Recent research has shown the importance of spatial correlation in road crash models. Because many different spatial correlation structures are possible, however, this study tested several segment neighboring structures to establish the most promising one to model crash frequency in road networks. A multilevel approach was also used to account for the spatial correlation between road segments of different functional types, which are usually analyzed separately. The study employed a full Bayes hierarchical approach with conditional autoregressive effects for the spatial correlation terms. Analyses of crash, traffic, and roadway inventory data from rural engineering districts in Pennsylvania and Washington affirmed the importance of spatial correlation in road crash models. Pure distance-based neighboring models (i.e., exponential decay) performed poorly compared with adjacency-based or distance order models. The results also suggest that spatial correlation is more important in distances of 1 mi or less. The inclusion of spatially correlated random effects significantly improved the precision of the estimates of the expected crash frequency for all segments by pooling strength from their neighbors and thus reducing their standard deviation. Results from Pennsylvania and Washington showed that spatial correlation substantially increased the random effects. There was a consistent indication that 70% to 90% of the variation explained by the random effects resulted from spatial correlation. This suggests that spatial models offer a significant advantage, since poor estimates that result from small sample sizes and low sample means are a frequent issue in highway safety analysis. Application of spatial correlation to the identification of sites with promise indicated that more sites were identified because of a reduction in the variance of the estimates, which would allow for greater confidence in the selection of sites for treatment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3