Effectiveness of Tire-Tread Patterns in Reducing the Risk of Hydroplaning

Author:

Fwa T. F.1,Kumar Santosh S.1,Anupam Kumar1,Ong G. P.2

Affiliation:

1. Department of Civil Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.

2. School of Civil Engineering, Purdue University, Civil Engineering Building, 550 Stadium Mall Drive, West Lafayette, IN, 47907-2051.

Abstract

Grooving of tire tread is necessary to provide sufficient skid resistance for wet-weather driving and to reduce the risk of hydroplaning. Many different groove patterns of tire tread are found in the market. However, their relative effectiveness in reducing hydroplaning risk is generally not known to motorists and highway engineers. The effects of changes in the groove depth of a tire tread's groove pattern also deserve further investigation. This paper presents an analytical study that aims to characterize quantitatively the influence of different tire-tread patterns and groove depths on the hydroplaning behavior of passenger cars. The analysis is performed by means of a computer simulation model with a three-dimensional finite element approach. The following six forms of tire-tread groove patterns are considered: ( a) longitudinal groove pattern, (b) transverse groove pattern, ( c) V-groove pattern with 20° V-cut, (d) V-groove pattern with 40° V-cut, ( e) combined groove pattern consisting of longitudinal grooves and edge horizontal grooves, and ( f) combined groove pattern consisting of longitudinal grooves and 20° V-cut grooves. The analysis shows that a parameter computed as the groove volume per tread area of the tire is a useful performance indicator to assess the effectiveness of various tire-tread groove patterns in reducing vehicle hydroplaning risk. The significance of V-shape grooves is discussed. For vehicular operations involving both forward and lateral movements, the analysis indicates that a combined pattern would provide a good compromise in lowering hydroplaning risk sufficiently in different modes of vehicle movements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference14 articles.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3