Factors that Influence Electrical Resistivity Measurements in Cementitious Systems

Author:

Spragg Robert1,Villani Chiara1,Snyder Ken2,Bentz Dale2,Bullard Jeffrey W.2,Weiss Jason1

Affiliation:

1. School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051.

2. Materials and Structural Systems Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8615, Gaithersburg, MD 20899.

Abstract

The electrical resistivity of cement-based materials can be used in quality control or service life prediction as an indicator of the fluid transport properties of these materials. Although electrical tests have the advantage of being easy and rapid to perform, several key factors can influence the results: (a) specimen geometry, (b) specimen temperature, and (c) sample storage and conditioning. This paper addresses these issues and compares the measurements from several commercially available testing devices. First, the role of sample geometry is explained with the use of three common geometries: surface, uniaxial, and embedded electrodes. If the geometry is properly accounted for, measurements from different test geometries result in electrical resistivity values that are similar. Second, the role of sample temperature is discussed for both pore solution and uniaxial tests on cylinders. Third, the paper examines the importance of sample curing, storage, and conditioning. Sample storage and conditioning influence both the degree of hydration and the degree of saturation. The role of sample volume to solution volume is discussed, as this ratio may influence alkali leaching and pore solution conduction. This paper is intended to identify factors that influence the results of rapid electrical test measurements and to help identify areas of future research that are needed so that robust specifications and standard test methods can be developed. Standardization will enable electrical tests to provide rapid, accurate, repeatable measurements of concrete's electrical properties.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3