Revised Design Procedure for Thin and Ultrathin Bonded Whitetopping

Author:

Vandenbossche Julie M.1,Dufalla Nicole2,Li Zichang2

Affiliation:

1. Room 705, Department of Civil and Environmental Engineering, University of Pittsburgh, Benedum Hall, Pittsburgh, PA 15261.

2. Room 713, Department of Civil and Environmental Engineering, University of Pittsburgh, Benedum Hall, Pittsburgh, PA 15261.

Abstract

Development of design procedures for bonded whitetopping overlays has been based on the assumption that failure mechanisms are a function of overlay thickness; namely, thin whitetopping results in longitudinal cracking and ultrathin whitetopping results in corner cracking. However, field data from whitetopping sections indicate that failure modes are dictated by slab size rather than overlay thickness. The revised procedure presented here for thin whitetopping and ultrathin whitetopping offers four primary enhancements to the Portland Cement Association and Colorado Department of Transportation procedures that traditionally have been used: (a) the failure mode is dictated by the joint spacing and not the overlay thickness, (b) the stress adjustments factors have been calibrated with an extensive data set, (c) the equivalent gradients to be used as the design input are defined according to the pavement structure and geographical location of the project and, (d) the effect of temperature change on hot-mix asphalt stiffness is considered. Comparisons of the predicted performance for the revised procedure with the actual performance for four separate projects showed that the predicted thicknesses are reasonable. It was also found that the predicted thickness obtained with the revised procedure was sensitive to the thickness of hot-mix asphalt, the level of traffic, and the modulus of rupture of the portland cement concrete, as expected.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference8 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3