Analysis of Naturalistic Driving Event Data

Author:

Jovanis Paul P.1,Aguero-Valverde Jonathan2,Wu Kun-Feng1,Shankar Venky1

Affiliation:

1. Department of Civil and Environmental Engineering, Larson Institute, Pennsylvania State University, 212 Sackett Building, University Park, PA 16802-1408.

2. Programa de Investigación en Desarrollo Urbano Sostenible, Universidad de Costa Rica, Barrio Los Profesores, Calle B, No. 11, Mercedes San Pedro, San José 11503, Costa Rica.

Abstract

Naturalistic driving studies have been conducted over the past 5 years or more and have commonly reviewed video and kinematic data to identify and analyze crash, near-crash, and critical-incident events. But statistical methods that are applicable to these event data are needed. This paper addresses two issues in model development for naturalistic driving event data: the test for omitted-variable bias and the exploration of the advantages of hierarchical model structures in data analysis. With roadway departure event data from the 100-Car Naturalistic Driving Study conducted at Virginia Tech Transportation Institute, Blacksburg, Virginia, logit models were used to estimate the probability that a crash or a near crash would occur, rather than a critical incident. The models indicated a substantial omitted-variable bias for estimation of the effect of context variables but little difference for driver variables. These tests indicated that modeling of naturalistic event data should have included variables that described the attributes of the event, the driver, and the context to reduce the likelihood of bias. Hierarchical model structures offer the advantage of driver-level predictors to parameterize the effects of event attributes and contexts. The models thus reflect how driver decisions are executed: drivers with particular characteristics (one level) find themselves in contexts in which they execute specific driving maneuvers (second level), which lead to certain outcomes. Suggestions for further research include testing with additional data sets and potential applications to analysis of crash surrogates.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3