Use of Recycled Tire Rubber to Modify Track–Substructure Interaction

Author:

Ho Carlton L.1,Humphrey Dennis1,Hyslip James P.2,Moorhead William3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, 28 Marston Hall, 130 Natural Resources Road, Amherst, MA 01003.

2. HyGround Engineering, LLC, P.O. Box 324, Williamsburg, MA 01096.

3. PCI-TRAMMCO, LLC, 1 Eagle Nest Lane, Smithfield, VA 23430-2573.

Abstract

Resiliently bound ballast (RBB) is a new engineered material being developed as an alternative or supplement to conventional ballast for use in transit, passenger, and freight railways to improve mechanical behavior and control the modulus and damping when recycled tire waste material is used. RBB is a stable mixture of standard ballast stone and tire-derived aggregate (TDA) bound together with a purpose-designed resilient epoxy binder. Initial laboratory tests were conducted on specimens 6 in. (151 mm) and 10 in. (254 mm) in diameter of two mixes of RBB. Tests were conducted on fully bound (cemented) samples of ballast, TDA, and epoxy as well as individual particles with TDA bound to the individual ballast particles with the resilient epoxy binder. The tests included static triaxial compression tests and dynamic cyclic triaxial tests. Static tests indicated that the addition of the TDA and epoxy resulted in an increase in cohesive strength. The dynamic tests indicated changes in modulus and damping depending on the mixture of rock, TDA, and epoxy. One proposed use of RBB is to affix the RBB to the bottom of concrete ties to modify the interaction between the tie and the ballast material and improve ballast durability and modify resilience and damping. Box tests were conducted on a section of concrete tie with and without RBB attached. The tie with a section of rail attached was vertically loaded with a sinusoidal load to model repetitive axle loading. Observations indicated that the box test that used a concrete tie without RBB produced more ballast breakage compared with the test that used a concrete tie with RBB; however, more abrasion between particles occurred with the RBB-bound tie.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Different Track Sub-Ballast Solutions Considering Traffic Loads and Sustainability;Infrastructures;2024-03-09

2. Characteristics of Geogrid-Reinforced Rubber-Coated Ballast under Cyclic Loading Conditions;Transportation Research Record: Journal of the Transportation Research Board;2024-02-27

3. Effect of Tire Chips on the Shear Behavior of Steel Slag and Granite Ballast Mixture;Transportation Research Record: Journal of the Transportation Research Board;2024-01-08

4. The use of recycled rubber in ballasted railway tracks: A review;Journal of Cleaner Production;2023-09

5. Performance of Geogrid-Reinforced Rubber-Coated Ballast and Natural Ballast Mix under Direct Shear Conditions;Journal of Materials in Civil Engineering;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3