Experimental and Numerical Studies on Flexural Behavior of Ultrahigh-Performance Concrete Panels Reinforced with Embedded Glass Fiber-Reinforced Polymer Grids

Author:

Meng Weina1,Khayat Kamal H.1

Affiliation:

1. Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, 500 West 16th Street, Rolla, MO 65409

Abstract

The use of glass fiber-reinforced polymer (GFRP) grids in reinforced concrete construction offers several advantages, such as high tensile strength and excellent corrosion resistance. This paper presents the results of experimental and numerical studies of the flexural performance of ultrahigh-performance concrete (UHPC) panels reinforced with GFRP grids. Such panels can be prefabricated and used as permanent formwork elements for bridge columns or walls. The mechanical properties of GFRP grids and UHPC were experimentally evaluated. The flexural performance of panels containing different reinforcement configurations was evaluated in three-point bending tests. The GFRP grids were found to be able to significantly enhance the flexural performance of the UHPC panels. A three-dimensional nonlinear finite element model was established by using ABAQUS, which incorporated the concrete damage plasticity model and can be used to predict the postfracture behaviors. The numerical model was experimentally validated by using the three-point bending test results and was then used for parametric studies. The studied parameters included the panel thickness and the layer number of the GFRP grids reinforcement. The proposed GFRP–UHPC panel system was shown to be promising for the development of lightweight, high-performance permanent formwork. Such formwork can be used in the accelerated construction of critical infrastructures for the enhancement of crack resistance and extension of the service life.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3