Development of Dynamic Transit Signal Priority Strategy

Author:

Ekeila Wael1,Sayed Tarek1,Esawey Mohamed El1

Affiliation:

1. Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, British Columbia, Canada V6T 1Z4.

Abstract

Transit signal priority (TSP) is a popular strategy used to enhance the performance of transit systems by modifying the signal control logic to give transit vehicles priority at signalized intersections. Conventional TSP strategies used in most cities have been shown to offer significant benefits by reducing delay of transit vehicles. However, concerns about shortcomings of conventional TSP strategies have limited their application. The main concern is a potential negative impact on cross street traffic. Another concern is the static nature of conventional TSP strategies and the lack of responsiveness to real-time traffic and transit conditions. A dynamic TSP control system has been developed that can provide signal priority in response to real-time traffic and transit conditions. The dynamic TSP system consists of three main components: a virtual detection system, a dynamic arrival prediction model, and a dynamic TSP algorithm. Two case studies are presented to test and compare the dynamic and the conventional TSP systems. A hypothetical intersection is simulated in the first case study, and a proposed light rail transit line is simulated in the second. For both case studies, a virtual detection system was developed in VISSIM, along with a linear travel time arrival prediction model. Finally, a dynamic TSP algorithm was developed to determine what TSP strategy to use and when to apply it. The results show that the dynamic TSP system reduced the total delay of transit vehicles and outperformed the conventional TSP system for reducing transit trip travel time.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference11 articles.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passenger‐based adaptive transit signal priority for BRT systems with multiple loading areas;IET Intelligent Transport Systems;2024-03-11

2. DSRC-Based Bus Trajectory Analysis and Prediction Near Signalized Intersection;Recent Advances in Traffic Engineering;2023-10-29

3. Research on selective activation of transit signal priority and signal timing optimization;Eighth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2023);2023-09-07

4. New signal priority strategies to improve public transit operations in an urban corridor;Canadian Journal of Civil Engineering;2023-09-01

5. Decentralized signal control for multi-modal traffic network: A deep reinforcement learning approach;Transportation Research Part C: Emerging Technologies;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3