Effects of Deicing Salt Solutions on Physical Properties of Pavement Concretes

Author:

Jain Jitendra1,Olek Jan1,Janusz Anna1,Jozwiak-Niedzwiedzka Daria2

Affiliation:

1. School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907.

2. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106, Warsaw, Poland.

Abstract

Salt solutions are used on pavement surfaces during wintry weather events to ensure safe driving conditions. In addition to sodium chloride (NaCl), which continues to be traditionally used as a deicer, solutions of calcium chloride (CaCl2) and magnesium chloride (MgCl2) are being increasingly used to provide a more consistent ice and snow control and thus ensure safe driving. This paper assesses the effects of three salt solutions (NaCl, CaCl2, and MgCl2) on several physical and mechanical properties of pavement concretes. These deicing solutions were used under simulated wetting–drying (W-D) and freezing–thawing (F-T) exposure regimes with total ion concentration of the deicers of 10.5 molal for W-D exposure and 5.5 molal for F-T exposure. Two types of concretes were used in the study: ordinary portland cement concrete and fly ash concrete, in which 20% (by mass) of cement was replaced by Class C fly ash. The physical changes of cylindrical specimens subjected to the W-D regime were monitored by ultrasonic pulse velocity measurements after every 2 weeks of exposure until the end of the test. At the end of the W-D exposure period, the same test cylinders were used to obtain the compressive strength of the concrete. The results of all measurements, combined with visual observations of the overall condition of the specimen, were used to assess the relative effect of deicers (and the exposure conditions) on both types of concretes. The overall findings from this research indicated that exposure to the CaCl2 deicer resulted, in general, in more severe changes in the physical and mechanical properties of both types of concrete used in this study.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3