Fuzzy C-Means Image Segmentation Approach for Axle-Based Vehicle Classification

Author:

Yao Zhuo1,Wei Heng2,Li Zhixia3,Corey Jonathan2

Affiliation:

1. 735 ERC, ART-Engines Transportation Research Laboratory, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0071

2. 792 Rhodes Hall, ART-Engines Transportation Research Laboratory, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0071

3. Department of Civil and Environmental Engineering, Speed School of Engineering, University of Louisville, W.S. Speed Building, Room 111, Louisville, KY 40292

Abstract

Vehicle classification information is vital to almost all types of transportation engineering and management applications, such as pavement design, signal timing, and safety. Although the vehicular length–based classification scheme is widely used by state departments of transportation, this scheme lacks the capability of accurately producing axle-based classification data. Limited by the capital cost, axle-based vehicle classification data sources are very narrow. This paper presents an image segmentation–based vehicle classification system with an attempt to increase the efficiency of axle-based vehicle classification. The video-based vehicle classification system Rapid Video-Based Vehicle Identification System (RVIS) is developed to identify the number of axles automatically from ground-truth videos. Through the testing of individual vehicle image data sets, it is shown that the RVIS system is capable of successfully detecting all FHWA 13 vehicle classes. However, larger-scale testing of the RVIS system with a predetermined set of morphological parameters produces less accurate results. Comparison of two testing hours shows that with greater effort in calibration, results can be improved significantly and a great potential for field application exists. The advantages of the RVIS system are its robust and fast algorithm and its flexibility in that it can be applied either from a mobile video source or at locations with traffic-monitoring videos available. The RVIS system is a proven vehicle classification data source that adds to other existing vehicle classification approaches.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3