Monte Carlo Simulation Model of Intervehicle Communication

Author:

Jin Wen-Long1,Recker Wilfred W.2

Affiliation:

1. Department of Automation, Center for Intelligent Transportation Systems, University of Science and Technology of China, P.O. Box 4, Hefei, Anhui 230027, China.

2. Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Irvine, CA 92967.

Abstract

Decentralized traffic information systems based on intervehicle communication have drawn increasing attention in recent years. On the assumption that intervehicle communication is instantaneous relative to vehicle movement, multihop connectivity between two equipped vehicles subject to arbitrary distribution patterns of vehicles, market penetration rates, and transmission ranges is studied. A modeling conceptual framework and definitions are discussed, and a Monte Carlo simulation model of multihop connectivity of instantaneous intervehicle communication systems is presented. With three different, well-chosen random number generators, it is demonstrated that the Monte Carlo simulation model yields results consistent with those in the literature that consider vehicle mobility and that cross-validate analytical models developed previously. The features of the simulation model facilitate determination of the connectivity of large-scale intervehicle communication systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3