Computational Vision Model to Assess Work-Zone Conspicuity

Author:

Barton Jay E.1,Misener James A.1,Cohn Theodore E.2

Affiliation:

1. University of California at Berkeley, Institute of Transportation Studies, California PATH, Richmond Field Station, 1357 South 46th Street, Building 452, Richmond, CA 94804-4698

2. University of California at Berkeley, School of Optometry, 360 Minor Hall (MC: 2020), Berkeley, CA 94720

Abstract

A computational means to assess the conspicuity of highway features was developed, verified, and then applied to a sample construction work zone scene. This work was conceived as a balance between modeling the complex phenomena within the human visual system and the need for a simple applications-oriented tool for practitioners to derive a quantitative relative assessment of real-world construction work zones to rank choices in terms of conspicuity. The results indicate that the vision model–based tool can assess the relative conspicuity of individual elements of a roadway or roadside scene and is relatively straightforward in use. As such, it holds potential value in virtual prototyping of work-zone sight lines, colors, and placement of hazard warning cues, such as cones, markings, and reflective vests.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3