Prediction of Field Aging Gradient in Asphalt Pavements

Author:

Luo Xue1,Gu Fan2,Lytton Robert L.3

Affiliation:

1. Room 508B, Texas A&M University, College Station, TX 77843.

2. Room 508K, Texas A&M Transportation Institute, 3135 TAMU, Texas A&M University, College Station, TX 77843.

3. Room 503A, Zachry Department of Civil Engineering, 3136 TAMU, CVLB Building, Texas A&M University, College Station, TX 77843.

Abstract

The aging of asphalt pavements is a key factor that influences pavement performance. Aging can be characterized by laboratory tests and prediction models. Common aging prediction models use the change of physical or chemical properties of asphalt binders based on regression techniques or aging reaction kinetics. The objective of this study was to develop a kinetics-based aging prediction model for the mixture modulus gradient in asphalt pavements to study long-term in-service aging. The proposed model was composed of three submodels for baseline modulus, surface modulus, and aging exponent to define the change of the mixture modulus with pavement depth. The model used kinetic parameters (aging activation energy and preexponential factor) of asphalt mixtures and combined the two reaction rate periods (fast-rate and constant-rate). Laboratory-measured modulus gradients of 29 field cores at different ages were used to determine the model parameters. The laboratory testing condition was converted to the field condition at a given age and corresponding temperature by introducing the rheological activation energy to quantify the temperature dependence of field cores at each age. The end of the fast-rate period or the beginning of the constant-rate period was accurately identified to model these two periods and to determine the associated parameters separately. The results showed that the predictions matched well with the measurements and the calculated model parameters were verified. The proposed aging prediction model took into account the major factors that affect field aging speed of an asphalt pavement, such as the binder type, aggregate type, air void content, pavement depth, aging temperature, and aging time.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3