Gradation Effects Influencing Mechanical Properties of Aggregate Base–Granular Subbase Materials in Minnesota

Author:

Xiao Yuanjie1,Tutumluer Erol1,Qian Yu1,Siekmeier John A.2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, Urbana, IL 61801.

2. Office of Materials and Road Research, Minnesota Department of Transportation, Maplewood, MN 55109.

Abstract

Aggregate gradation effects on strength and modulus characteristics of aggregate base–granular subbase materials used in Minnesota are described. The importance of specifying proper aggregate grading or particle size distribution has long been recognized for achieving satisfactory performance in pavement applications. In the construction of dense-graded unbound aggregate base–subbase layers, well-graded gradation bands were often established years ago on the basis of the experience of the state transportation agency and may not have a direct link to mechanical performance. To improve specifications for superior performance targeted in the mechanistic–empirical pavement analysis and design framework, there is a need to understand how differences in aggregate gradations may affect unbound aggregate base–subbase behavior for site-specific design conditions. Aggregates with different gradations and material properties were compiled in a statewide database established from a variety of sources in Minnesota. Analyses showed nonunique modulus and strength relationships for most aggregate base and especially subbase materials. Laboratory resilient modulus and shear strength results were analyzed for critical gradation parameters by common gradation characterization methods. The most significant correlations were between a gravel-to-sand ratio (proposed based on ASTM D2487-11) and aggregate shear strength properties. Aggregate compaction (AASHTO T99) and resilient modulus characteristics could also be linked to the gravel-to-sand ratio and verified with other databases in the literature. The gravel-to-sand ratio can be used to optimize aggregate gradations for improved base–subbase performances primarily influenced by shear strength.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference22 articles.

1. TutumluerE., MishraD., and ButtA. A. Characterization of Illinois Aggregate for Subgrade Replacement and Subbase. Technical Report FHWA-ICT-09-060. Illinois Center for Transportation, Urbana–Champaign, 2009, pp. 1–179.

2. Erosion susceptibility of granular pavement materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3