Chloride Permeability and Microstructure of Portland Cement Mortars Incorporating Nanomaterials

Author:

He Xiaodong1,Shi Xianming1

Affiliation:

1. Corrosion and Sustainable Infrastructure Laboratory, Western Transportation Institute, Montana State University, P.O. Box 174250, Bozeman, MT 59717-4250.

Abstract

Chloride permeability of concrete has been recognized as a critical intrinsic property affecting the durability of reinforced concrete. An experimental study was done, designed to examine the chloride permeability and microstructure of portland cement mortar with nanomaterials admixed at 1% by weight of cement. The electromigration test showed that, for cement mortars of the same mix design, the incorporation of nanoparticles (Fe2 O3, Al2O3, TiO2, and SiO2) and nanoclays (montmorillonite) improved the chloride penetration resistance of the mortar, as indicated by the reduced apparent diffusion coefficients of chloride anion. The nanomaterials also reduced the general ionic permeability of the mortar, as indicated by the reduced electric charge passing through. Such improvements were especially significant when using nano-SiO2 and nanoclays. The electrochemical impedance spectroscopy test indicated that incorporation of nanomaterials in cement mortar significantly increased its ionic transport resistance and decreased its electric capacitance, and again such effects were especially significant when using nano-SiO2 and nanoclays. The field emission scanning electron microscopy test revealed that the admixing of nanomaterials not only led to denser cement mortar but also changed the morphology of cement hydration products. Mechanisms are proposed to explain the physicochemical changes induced by the nanomaterials and the specific surface area of nanomaterials is demonstrated as one of the key factors. Considering the low cost of nanoclays, their use in concrete to reduce chloride permeability and to improve other properties of concrete is promising.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3