Dynamic Ventilation and Power Output of Urban Bicyclists

Author:

Bigazzi Alexander Y.1,Figliozzi Miguel A.1

Affiliation:

1. Department of Civil and Environmental Engineering, Portland State University, P.O. Box 751, Portland, OR 97207-0751.

Abstract

Bicyclists' intake of air pollutants is linked to physical exertion levels, ventilation rates, and exposure concentrations. Whereas exposure concentrations have been widely studied in transportation environments, there has been relatively scant research linking on-road ventilation with travel conditions and exertion levels. This paper investigates relationships between power output, heart rate, and ventilation rate for urban bicyclists. Heart rate and ventilation rate were measured on-road and combined with power output estimates from a bicycle power model. Dynamic ventilation rates increased by 0.4% to 0.8% per watt of power output, with a mean lag of 0.8 min. The use of physiology (ventilation) monitoring straps and heart rate proxies for dynamic on-road ventilation measurements is discussed. This paper provides for a clearer and more quantitative understanding of bicyclists' ventilation and power output, which is useful for studies of pollutant inhalation risks, energy expenditure, and physical activity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3