Use of Superpave Technology for Design and Construction of Rubberized Asphalt Mixtures

Author:

Takallou H. Barry1,Bahia Hussain U.2,Perdomo Dario3,Schwartz Robert4

Affiliation:

1. TAK Consulting Engineers, Inc., 23272 Mill Creek, Suite 250, Laguna Hills, Calif. 92653

2. Department of Civil Engineering, University of Wisconsin, Madison, 2210 Engineering Building, Madison, Wis. 53706

3. PRI Asphalt Technologies, Inc., 6408 Badger Drive, Tampa, Fla. 33610

4. All American Asphalt, 1776 All American Way, Corona, Calif. 91718

Abstract

The effect of different mixing times and mixing temperatures on the performance of asphalt-rubber binder was evaluated. Four different types of asphalt-rubber binders and neat asphalt were characterized using the Strategic Highway Research Program (SHRP) binder method tests. Subsequently, mix designs were carried out using both the SHRP Levels I and II mix design procedures, as well as the traditional Marshall mix design scheme. Additionally, performance testing was carried out on the mixtures using the Superpave repetitive simple shear test at constant height (RSST-CH) to evaluate the resistance to permanent deformation (rutting) of the rubberized asphalt mixtures. Also, six rectangular beams were subjected to repeated bending in the fatigue tester at different microstrain levels to establish rubberized asphalt mixtures’ resistance to fatigue cracking under repeated loadings. The results indicate that the Superpave mix design produced asphalt-rubber contents that are significantly higher than values used successfully in the field. Marshall-used gyratory compaction could not produce the same densification trends. Superpave mixture analysis testing (Level II) was used successfully for rubberized asphalt mixtures. Results clearly indicated that the mixture selected exhibited acceptable rutting and fatigue behavior for typical new construction and for overlay design. Few problems were encountered in running the Superpave models. The results of the RSST-CH indicate that rubber-modified asphalt concrete meets the criteria for a maximum rut depth of 0.5 in.; and more consistent results were measured for fatigue performance analysis using the repeated four-point bending beam testing (Superpave optional torture testing). The cycles to failure were approximately 26,000 at 600 microstrain.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference5 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3