Traffic Signal Control with Connected Vehicles

Author:

Goodall Noah J.1,Smith Brian L.2,Park Byungkyu (Brian)2

Affiliation:

1. Virginia Center for Transportation Innovation and Research, 530 Edgemont Road, Charlottesville, VA 22903.

2. Department of Civil and Environmental Engineering, University of Virginia, P.O. Box 400742, 351 McCormick Road, Charlottesville, VA 22904-4742.

Abstract

The operation of traffic signals is currently limited by the data available from traditional point sensors. Point detectors can provide only limited vehicle information at a fixed location. The most advanced adaptive control strategies are often not implemented in the field because of their operational complexity and high-resolution detection requirements. However, a new initiative known as connected vehicles allows the wireless transmission of the positions, headings, and speeds of vehicles for use by the traffic controller. A new traffic control algorithm, the predictive microscopic simulation algorithm, which uses these new, more robust data, was developed. The decentralized, fully adaptive traffic control algorithm uses a rolling-horizon strategy in which the phasing is chosen to optimize an objective function over a 15-s period in the future. The objective function uses either delay only or a combination of delay, stops, and decelerations. To measure the objective function, the algorithm uses a microscopic simulation driven by present vehicle positions, headings, and speeds. The algorithm is relatively simple, does not require point detectors or signal-to-signal communication, and is completely responsive to immediate vehicle demands. To ensure drivers' privacy, the algorithm does not store individual or aggregate vehicle locations. Results from a simulation showed that the algorithm maintained or improved performance compared with that of a state-of-the-practice coordinated actuated timing plan optimized by Synchro at low and midlevel volumes, but that performance worsened under saturated and oversaturated conditions. Testing also showed that the algorithm had improved performance during periods of unexpected high demand and the ability to respond automatically to year-to-year growth without retiming.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3