Affiliation:
1. Virginia Center for Transportation Innovation and Research, 530 Edgemont Road, Charlottesville, VA 22903.
2. Department of Civil and Environmental Engineering, University of Virginia, P.O. Box 400742, 351 McCormick Road, Charlottesville, VA 22904-4742.
Abstract
The operation of traffic signals is currently limited by the data available from traditional point sensors. Point detectors can provide only limited vehicle information at a fixed location. The most advanced adaptive control strategies are often not implemented in the field because of their operational complexity and high-resolution detection requirements. However, a new initiative known as connected vehicles allows the wireless transmission of the positions, headings, and speeds of vehicles for use by the traffic controller. A new traffic control algorithm, the predictive microscopic simulation algorithm, which uses these new, more robust data, was developed. The decentralized, fully adaptive traffic control algorithm uses a rolling-horizon strategy in which the phasing is chosen to optimize an objective function over a 15-s period in the future. The objective function uses either delay only or a combination of delay, stops, and decelerations. To measure the objective function, the algorithm uses a microscopic simulation driven by present vehicle positions, headings, and speeds. The algorithm is relatively simple, does not require point detectors or signal-to-signal communication, and is completely responsive to immediate vehicle demands. To ensure drivers' privacy, the algorithm does not store individual or aggregate vehicle locations. Results from a simulation showed that the algorithm maintained or improved performance compared with that of a state-of-the-practice coordinated actuated timing plan optimized by Synchro at low and midlevel volumes, but that performance worsened under saturated and oversaturated conditions. Testing also showed that the algorithm had improved performance during periods of unexpected high demand and the ability to respond automatically to year-to-year growth without retiming.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
199 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献