Urban Storage Space Selection Method for Integrated Control on a Freeway Bottleneck

Author:

Landman R. L.1,Hegyi A.1,Hoogendoorn S. P.1

Affiliation:

1. Delft University of Technology, Department of Transport and Planning, Faculty of Civil Engineering and Geosciences, P.O. Box 5048, 2600 GA Delft, Netherlands

Abstract

Ramp metering is an effective means to reduce freeway bottleneck delay that results from the capacity drop phenomenon when congestion sets in. The bottleneck flow is kept at free-flow capacity by temporarily storing vehicles traveling toward the bottleneck at the ramp. The metering duration is normally limited because of the finite amount of ramp storage space available to prevent undesired spill back to the urban network. A beneficial extension of the metering duration might be achieved by strategically choosing upstream intersection arms that reduce their inflow to the ramp. For that purpose, coordination needs to be realized between the ramp meter and its intersection controllers located upstream, which will also hinder vehicles not traveling toward the ramp. In this contribution, an evaluation approach is put forward to decide objectively which intersection buffers (arms) should be included in the coordination. To quantify the resulting delays in the system, cumulative inflow and outflow curves are developed as a function of the involved situation-specific variables. This approach enables one to determine the optimal set of coordinated buffers beforehand and to gain insight into the effect of the various system variables on the delays. By means of worked examples, these effects are illustrated, and the way to determine the optimal set of coordinated buffers is shown. Results show that the length of the peak period and the size of the capacity drop strongly determine the coordination benefits, and, hence, a buffer’s minimum required fraction of traffic traveling past the bottleneck needed to result in beneficial coordination.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3