Alternate Shift Factor Relationship for Describing Temperature Dependency of Viscoelastic Behavior of Asphalt Materials

Author:

Rowe Geoffrey M.1,Sharrock M. J.2

Affiliation:

1. Abatech Inc., P.O. Box 356, Blooming Glen, PA 18911.

2. Abatech Inc., 22 Andover Road North, Winchester SO 26NW, United Kingdom.

Abstract

Traditionally, various forms of shift factors such as Arrhenius, Williams–Landel–Ferry (WLF), and polynomials have been used with asphalt materials. Shift factors have also been estimated with binder viscosity parameters. Successful extrapolation of viscoelastic functions requires a robust form of shift factor–temperature relationship. This form is important for performing calculations at the extremes of temperature found in practice. A preliminary analysis of complex modulus E* data of mixtures obtained from the Mechanistic–Empirical Pavement Design Guide (MEPDG) database demonstrated that the Kaelble form of shift factor could describe the functional form of the shift factor more accurately than the Arrhenius, WLF, or polynomial-fitting functions. However, the Kaelble shift function as originally described uses the same temperature as a reference temperature and as an inflection temperature. This factor creates a problem when attempts are made to implement the function in a design method or when materials are compared at a given temperature. Since 2008, additional work has investigated the use of this shift function to describe the properties of asphalt materials, particularly mixes and materials that require a wide range of property description (both above and below the glass transition or some other defining point). A modified form of the Kaelble function has been implemented in analysis software and thus makes multiple calculations more rapid. Additional analysis working with MEPDG E* database materials has shown that shifting works best with the Kaelble modification of the WLF equation. The same method has been applied to other asphalt materials.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference19 articles.

1. A general system describing the visco-elastic properties of bitumens and its relation to routine test data

2. Research and Development of the Asphalt Institute Thickness Design Manual (MS-1), 9th ed. RR-82-2. Asphalt Institute, Lexington, Ky., 1982.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3