Fatigue Assessment of Traffic Signal Mast Arms Based on Field Test Data Under Natural Wind Gusts

Author:

Chen Genda1,Wu Jingning1,Yu Jiaqing1,Dharani Lokeswarappa R.1,Barker Michael2

Affiliation:

1. Butler-Carlton Civil Engineering Hall, University of Missouri-Rolla, 1870 Miner Circle, Rolla, MO 65409-0030

2. Department of Civil Engineering, E2509 Engineering Building East, University of Missouri-Columbia, Columbia, MO 65211

Abstract

In recent years, several states including Missouri, Wyoming, California, and Texas experienced fracture failures of traffic signal mast arms. Almost all the failures are associated with the propagation of defects or cracks. It is therefore imperative to evaluate existing mast arms using a simple yet accurate procedure. A statistical methodology is proposed to predict the fatigue life of signal mast arm structures on the basis of field-measured strain data. The annual occurrence of various stress levels is determined using the historical wind speed data in the vicinity of a mast arm structure and the strain readings of the structure under specific wind gusts. For each stress level, the crack initiation and propagation lives are estimated with the strain-life approach and the Paris crack-growth-rate model. They are combined to account for variable stresses by means of Miner’s rule and the root-mean-square model, respectively. The stress concentration factor around the arm-post connection is determined using a finite element model. The parameters in the life prediction models are determined with ASTM flat tension and compact tension tests. The proposed methodology was applied to a 12.8-m (42-ft) long octagonal mast arm and a 16.5-m (54-ft) long circular mast arm in Missouri. It is concluded that signal structures in perfect condition will not crack under natural wind gusts during their service life. However, the 16.5-m-long arm is likely to be vulnerable to tiny defects around the weld connection, but the 12.8-m-long arm is safe unless a visible crack exists.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3