Measuring Rail Seat Pressure Distribution in Concrete Crossties

Author:

Rapp Christopher T.1,Dersch Marcus S.1,Edwards J. Riley1,Barkan Christopher P. L.1,Wilson Brent2,Mediavilla Jose3

Affiliation:

1. Rail Transportation and Engineering Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, Urbana, IL 61801.

2. Amsted Rail, Inc., 1700 Walnut Street, Granite City, IL 62040.

3. Amsted RPS, 8400 West 110th Street, Suite 300, Overland Park, KS 66210.

Abstract

A sustained increase in gross rail loads and cumulative freight tonnages as well as growing interest in high-speed passenger rail development is placing an increasing demand on North American railway infrastructure. To meet this demand, improvements to the performance and durability of concrete crossties and fastening systems are necessary. One of the typical failure modes for concrete crossties in North America is rail seat deterioration, and researchers have hypothesized that localized crushing of the concrete in the rail seat is one of the potential mechanisms that contributes to this failure mode. To understand this mechanism better, the University of Illinois at Urbana–Champaign is using a matrix-based tactile surface sensor to measure and quantify the forces and pressure distribution acting at the contact interface between the concrete rail seat and the bottom of the rail pad. Preliminary data collected during laboratory experimentation have shown that a direct relationship existed between rail pad modulus and maximum rail seat pressure. In addition, under a constant vertical load, a direct relationship between the lateral-to-vertical force ratio and the maximum field side rail seat pressure was observed. Given that all preliminary results indicate that various combinations of pad modulus, track geometry, and lateral-to-vertical force ratio create localized areas of high pressure, crushing remains a potential mechanism leading to rail seat deterioration. Through the analysis of rail seat pressure data, valuable insight can be gained that can be applied to the development of designs for concrete crosstie and fastening system components that meet current and projected service demands.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference15 articles.

1. International Heavy Haul Association. Guidelines to Best Practices for Heavy Haul Railway Operations, Infrastructure Construction, and Maintenance Issues. D. & F. Scott Publishing, Inc. North Richland Hills, Tex., 2009, Chaps. 1, 3, and 5, pp. 1–59, 3–67, 3–72, 5–2, and 5–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3