Spatial Microassignment of Travel Demand with Activity Trip Chains

Author:

Abdelghany Ahmed F.1,Mahmassani Hani S.1,Chiu Yi-Chang1

Affiliation:

1. Department of Civil Engineering, University of Texas at Austin, ECJ 6.2, Austin, TX 78712

Abstract

As activity-based approaches gain acceptance for travel demand analysis and forecasting in practice, the unit of analysis in transportation planning models needs to shift from a one-way trip to an activity schedule with associated trip chains. A spatial network assignment process and its application to an actual network are described; the process can be used in conjunction with activity-based travel demand forecasting procedures as well as for traffic operational studies. Two simulation-based dynamic spatial microassignment procedures for travel demand with activity trip chains are presented. The first represents a one-step simulation-assignment procedure in which assignment of trips is based on prevailing travel time. The second is an iterative simulation-assignment procedure in which a user equilibrium solution is obtained. The models are illustrated through various experiments conducted using an actual network (in Fort Worth, Texas) to examine network performance under different activity and trip-chaining scenarios. Different demand levels with different trip chain patterns are considered and compared for an actual transportation network. In addition, a case is made for dynamic microassignment of activity trip chains by contrasting it with current practice and illustrating the pitfalls of inappropriately recognizing trip chains using current-practice assignment. In particular, two different procedures are considered and compared for selected test scenarios with the dynamic assignment models presented. The first procedure corresponds to the case in which the activity and trip-chaining behavior is completely ignored, and only the final destination in the chain is considered. The second procedure treats the links of the chains separately as independent trips, without appropriate linkage between them.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3