Reconsideration of Sample Size Requirements for Field Traffic Data Collection with Global Positioning System Devices

Author:

Li Shuo1,Zhu Karen1,van Gelder B. H. W.2,Nagle John3,Tuttle Carl3

Affiliation:

1. Division of Research, Indiana Department of Transportation, 1205 Montgomery Street, West Lafayette, IN 47906

2. Purdue University, 1284 Civil Engineering Building, West Lafayette, IN 47907

3. Indiana Department of Transportation, 100 North Senate Avenue, Indianapolis, IN 46204

Abstract

The use of Global Positioning System (GPS) technologies has expanded to perform traffic data collection for transportation studies such as work zone studies. To generate reliable results from the data acquired by using GPS devices, it is necessary to investigate such factors as sample size requirements that may affect a specific study and to establish a consistent method for data collection. It has been confirmed that the Institute of Transportation Engineers’ Manual of Transportation Engineering Studies usually underestimates the sample sizes for travel time and delay studies. However, the hybrid method developed by Quiroga and Darcy overestimates the sample sizes. A modified equation is presented to estimate the minimum sample sizes for collecting field data with GPS devices. Travel speed may be more stable and can be easily measured for travel time and delay studies. Stopped delay varies considerably at intersections, and the sample sizes depend to a large extent on the permitted errors. Work zone layout and construction activities will create variations in vehicle flow within the work zone. To estimate the sample size requirements, it is advisable to use the standard deviation to measure the data dispersion, and a minimum of three initial test runs is required. GPS devices with sufficient accuracy usually require 5 to 10 samples for travel time and delay studies and work zone studies. Stopped delay studies may require a large sample of up to 30 test runs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3