Effect of Polymer and Oil Modification on the Aging Susceptibility of Asphalt Binders

Author:

Li Ying1,Moraes Raquel2,Lyngdal Erik1,Bahia Hussain1

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin–Madison, 1415 Engineering Drive, Madison, WI 53706

2. Asphalt Technology, Research, and Development, GAF Materials Corporation, 202 Cedar Road, Ennis, TX 75119

Abstract

Oxidative aging causes hardening of asphalt binders and, consequently, contributes to the deterioration of asphalt pavements. The principal cause of asphalt aging and embrittlement in service is the atmospheric oxidation of molecules with the formation of highly polar and strongly interacting functional groups containing oxygen. Therefore, aging is a complex process in unmodified asphalt binders, and the complexity increases for modified binders. The dynamics of world resource economics suggest that the asphalt pavement industry should be exploring economically and environmentally sustainable approaches to development, such as the addition of recycled oils to the base asphalt binder, and thus research activities are noteworthy in this area. The effect of oil and polymer modification on asphalt binder rheology and oxidative aging has become a popular topic for research in recent years. However, the effects of oil and polymers are often studied independently. The objective of this study was to investigate the modification effects of bio-oil, re-refined wasted engine oil, polymers, and the interaction between polymers and oil on the aging susceptibility of asphalt binders. After laboratory accelerated aging procedures were conducted, dynamic shear rheometer and bending beam rheometer tests were used for the rheological performance evaluation. Gel permeation chromatography and Fourier transform infrared spectroscopy were used to verify the rheological results with chemical analysis tools. Results indicate that the aging susceptibility of modified asphalt binders is dependent on modification chemistry. Certain polymers and combinations of polymers with oil can reduce the base asphalt binder’s susceptibility to aging.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3