Effects of Adaptive Lane Departure Warning System on Driver Response to a Surprise Event

Author:

Tijerina Louis1,Blommer Mike1,Curry Reates1,Greenberg Jeff1,Kochhar Dev1,Simonds Craig1,Watson David1

Affiliation:

1. Ford Research and Innovation Center, Ford Motor Company, 2101 Village Road MD3137, Dearborn, MI 48121.

Abstract

A lane departure warning (LDW) system monitors the current lane position of a vehicle and presents a driver alert when one of the vehicle's front tires crosses a threshold, for example, the nearest lane line. The primary intent of such warning systems is to prevent or mitigate road departures and related crashes caused by driver distraction or drowsiness. The present evaluation compared adaptive and nonadaptive versions of an LDW system. The adaptive version adapted to the driver's state, whereas the nonadaptive version did not. The adaptive LDW system alerted the driver only if a driver state monitor (DSM) indicated that the driver was looking away from the road ahead for 2 s or longer at about the time when a lane line was crossed. Forty volunteers drove a high-fidelity, moving-base driving simulator in a study to compare driver responses to a surprise lane departure when they used a nonadaptive LDW system and then an adaptive LDW system or vice versa. The results indicated that in the adaptive LDW mode, 13 subjects (34%) either experienced delayed activation of the LDW alert or received no LDW alert at all when they should have, primarily because of both the 2-s rule in the adaptive LDW algorithm and DSM registration issues. The adaptive LDW resulted in significantly larger lane excursions at the onset of the LDW alert compared with those that occurred in the non-adaptive LDW mode. These results highlight the dependence of the performance effects of adaptive systems on system hardware, algorithms, and algorithm parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3