Analyzing Multimodal Public Transport Journeys in London with Smart Card Fare Payment Data

Author:

Seaborn Catherine1,Attanucci John2,Wilson Nigel H. M.3

Affiliation:

1. Halcrow Group, Vineyard House, 44 Brook Green, Hammersmith, London W6 7BY, United Kingdom.

2. Center for Transportation and Logistics, Room 1-274, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139.

3. Department of Civil and Environmental Engineering, Room 1-238, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139.

Abstract

This paper contributes to the emerging literature on the application of smart card fare payment data to public transportation planning. The research objective is to identify and assess complete, multimodal journeys using Oyster smart card fare payment data in London. Three transfer combinations (bus-to-Underground, Underground-to-bus, and bus-to-bus) are considered to formulate recommendations for maximum elapsed time thresholds to identify transfers between journey stages for each passenger on the London network. Recommended elapsed time thresholds for identifying transfers are 20 min for Underground-to-bus, 35 min for bus-to-Underground, and 45 min for bus-to-bus, but a range of values that account for variability across the network are also assessed. Key findings about bus and Underground travel in London include an average of 2.3 daily public transportation journeys per passenger, 1.3 journey stages per public transportation journey, and 23% of Underground journeys involving a transfer to or from a bus. The application of complete journey data to bus network planning is used to illustrate the value of new information that would be available to network planners through the use of smart card fare payment data.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference17 articles.

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3