Existence and Use of Low-Pollution Route Options for Observed Bicycling Trips

Author:

Broach Joseph1,Bigazzi Alexander Y.2

Affiliation:

1. Nohad A. Toulan School of Urban Studies and Planning, Portland State University, P.O. Box 751, Portland, OR 97207-0751

2. Department of Civil Engineering, School of Community and Regional Planning, University of British Columbia, 2029–6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada

Abstract

Do routes with lower doses of air pollution exist in real-world bicycling networks, and do bicyclists actually use those routes? Low-pollution-dose alternative routes for a sample of urban cycling trips were modeled and compared with shortest paths. Bicyclists’ actual route choices on the same trips were observed with the use of GPS data and compared with the low-dose and shortest paths alternatives. With use of past studies of pollution exposure levels and simplified ventilation rates, link-inhaled doses of air pollution were estimated. Findings suggest that a majority of trips have lower-dose alternatives to the shortest path, with a 12% average dose reduction. Cyclists tend to choose routes with pollution concentrations between those of shortest paths and minimum-dose routes, but they also travel considerably farther, leading to total inhaled doses that are higher than on either alternative route. People’s seeming avoidance of nontraffic factors such as hills, excess turns, and difficult intersections leads to longer than optimal detours from a pollution avoidance perspective. Bike paths and bike boulevards (traffic-calmed streets with bicycle priority), as well as denser street grids, appear to provide effective low-pollution alternatives, although such routes tend to encourage excess detours that can add to total inhaled dose. Bike lanes can draw cyclists onto more polluted routes in some circumstances, with poor pollution inhalation outcomes. Overall, excess doses did seem to be a common problem for this sample of cyclists on a real-world network. The study’s findings support policies that provide dense networks of attractive facilities that encourage cyclists to choose direct, lower-pollution routes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

1. Bicycle route preference and pollution inhalation dose: Comparing exposure and distance trade-offs

2. BroachJ. Travel Mode Choice Framework Incorporating Realistic Bike and Walk Routes. PhD dissertation. Portland State University, Portland, Oregon, 2016.

3. Potential pollution exposure reductions from small-distance bicycle lane separations

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3