Use of Skew-Normal and Skew-t Distributions for Mixture Modeling of Freeway Speed Data

Author:

Zou Yajie1,Zhang Yunlong1

Affiliation:

1. Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136.

Abstract

Normal, lognormal, and other forms of distribution have been used to characterize speed data. Recently, several researchers have used the normal mixture model to fit the distribution of speed. To investigate the applicability of mixture models with other types of component density, a study was done that fits 24-h speed data collected on I-35 in Texas by using skew-normal and skew-t mixture models with an algorithm of expectation maximization type. The results show that a finite mixture of skew distributions can significantly improve the goodness of fit of speed data. Compared with normal distribution, skew-normal and skew-t distributions can accommodate skewness and excess kurtosis themselves; thus the skew mixture models require fewer components than normal mixture models to capture the asymmetry and bimodality present in speed data. The results of the study indicate that a two-component skew-t mixture model is the optimal model, and this model can better account for heterogeneity in the data. The study verifies that traffic flow condition is the main cause for heterogeneity in the 24-h speed data. The research methodology can be used to analyze freeway speed data characteristics. The findings can also be used in development and validation of microscopic simulation of freeway traffic.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3